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Abstract 

 
 This research developed and applied microlithography techniques to etch 

microscope slide platforms in order to measure thermal inactivation of Bacillus 

thuringiensis and Bacillus anthracis spores, two closely related Bacillus species.  B.t. is 

widely used as a surrogate for B.a. in response studies and in some field studies. This 

work addressed the previously identified problem of measuring both spore growth and 

spore thermal kill threshold using the traditional method of spreading a diluted spore 

solution on a plate.  The micro-etched platforms forced spore separation thereby 

preventing neighbor growth from obscuring germination and initial vegetative growth 

measurements using a microscope.  The technique permits observation of small samples 

of spores over time and yielded more accurate response measurements.  This study 

includes comparison of thermal responses between B.a. and B.t. spores that were 

prepared and stored in exactly the same environment and conditions.  Findings support 

the continued use of B.t. as a substitute for B.a. in this type of work and especially in 

studies for thermal inactivation for short times periods of a minute or less.  The micro-

etched slides can also be applied to laser inactivation of spores for exposure times as 

short as milliseconds. 
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MICRO-ETCHED PLATFORMS FOR THERMAL INACTIVATION OF BACILLUS 
ANTHRACIS AND BACILLUS THURINGIENSIS SPORES 

 

I. Introduction 

Background 
 

The realities of current world political and ideological thought ensure the 

continued trend of asymmetrical warfare tactics.  Despite more than a century of global 

attempts to eradicate the use of Chemical and Biological Weapons (CB), the threat of 

their wide spread employment on civilian targets has increased.  Indeed, the well known 

biological agent Anthrax, Bacillus anthracis (B.a.), was recently used to terrorize 

American citizens in the 2001 discovery of B.a. spores sent through the US postal system 

to two senators.  Homeland security concepts are clearly focused to defend the average 

citizen against such potential CB attacks by both foreign and domestic terrorist 

organizations.  This research supports the interest of both civil and military organizations 

in pursuit of neutralization of anthrax.  Bacillus anthracis, because of its spore formation, 

may be the most difficult weaponized biological agent to destroy by conventional or 

incendiary device.   

   Combating the threat of the use of CB agents is the focus of many agencies in 

both the government and civilian sectors.  Algorithms are being developed to try to 

predict the reaction and neutralization of several of the known agents using variations of 

both conventional and unconventional weapons scenarios.  These algorithms must 

address agent response to a variety of environmental stressors to include temperature, 

humidity, radiation, and chemical reactions.  However, additional experimental data is 

needed as input to these algorithms to assure accurate predictions. 
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The subject of this project is Bacillus spore, specifically the Bacillus anthracis 

Sterne strain (B.a.) and Bacillus thuringiensis var. kurstaki (B.t.). It is common in 

experiments to use nonpathogenic members of  Bacillus  as simulants, since they are 

genetically similar.  B.t. and B.a. differ in the presence of peptides in  B.t.  that 

presumably prompt the formation of crystalline coating over the spore coat. Although B.t. 

is used as a B.a. simulant, the B.a. Stern strain is not because it can induce a biochemical 

reaction in humans.  Since B.t species is used as a simulant, a side by side comparison of 

the two species and their response to heat in necessary to confirm whether this 

substitution is accurate for thermal inactivation studies. 

Currently, there is abundant research data available concerning the response of 

Bacillus spores to high temperatures over minute and hour time frames, but little data on 

spore reaction to high heat in a time event of a second or less (Beaman, Greenamyer, 

Corner, Pankratz, & Gerhardt, 1982; Spotts Whitney et al., 2003; Turnbull, Frawley, & 

Bull, 2007).  The focus of this research is on the application of heat to the bacterial spore 

during very small time intervals of a minute or less which corresponds to counter 

proliferation scenarios.  The intent is to gather response data at these shorter times to lay 

the foundation for further research to develop response parameters for even shorter 

exposure times of less than a second.  The ultimate goal is to confidently predict a spore’s 

response to a real world exposure to the fireball created by the fire produced by an 

incendiary weapon or the detonation of a conventional weapon.   

The time-temperature spectral phenomenon profiles of a conventional high 

explosive fireball are currently being investigated by a research group lead by Dr. Perram 

at AFIT.  Dr. Kevin Gross, also at AFIT, recently developed a seven-parameter model 
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(fireball size, temperature, particle absorption coefficient, gas concentrations for H2O, 

CO2, CO, and HCl, of mid-wave infrared fireballs that correlate with the physical events 

by both type and weight of the high explosive. (Gross, Kevin C. 2007).  The peak fireball 

temperatures can be fit to a Plankian function with the assistance of a Matlab code 

written by Dr. Gross.  For an agent defeat weapon, RDX explosive, the peak temperature 

of 1578 ºKelvin was reached at 0.5 seconds with the heat from the fireball lasting a total 

of 4 seconds ( Orson, J.A. 2003; 104).  From this data, the short time-temperature kill 

threshold for conventional weapons that we eventually want to determine is up to 1600 

ºKelvin for a period of less than 4 seconds. 

Simply stated, the question at hand is whether a stock pile of weaponized anthrax 

spores can be confidently destroyed by a conventional weapon.  This research will be 

used to explore and identify the response of Bacillus anthracis spores to high 

temperatures over extremely short time durations of seconds in efforts to determine 

lethality thresholds.  Because of the historical and practical substitution among the 

Bacillus species in experimentation, this research also includes work to validate this 

practice at shorter exposure time durations.  

  This project is a direct continuation of earlier effort of another AFIT student, 

Kristine Goetz. The focus of her work was to develop a short time heating method to 

measure spore kill probability.  Goetz developed and tested the use of a Nd:YAG laser to 

indirectly heat spores dried on a microscope slide.  Silicon-carbide sandpaper was 

mechanically clamped to the underside of the spore-laden microscope slide.  The laser 

was then moved across the spores at various velocities using several laser power levels. 

The silicon-carbide sandpaper backing absorbed infrared radiation producing a miniature 
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fireball.  The heat localized in the area beneath the laser track thereby heated the spores 

to a specific temperature for short time intervals.  (Goetz, 2005)  The temperature of the 

miniature fireball was measured using FTIR spectroscopy in the same manner that Dr. 

Gross measured temperatures profiles of conventional munitions. (Gross, 2007) 

 
Purpose and Approach 
 

The additional contribution of this project to earlier work is a new spore slide 

design that seeks to resolve some of the following lingering issues for this method that 

were identified by Goetz.  These issues include the ability to accurately determine colony 

counts to measure kill probability and confidence in accurate time and temperature 

exposure for each spore. (Goetz, 2005)  The difficulty centered on the use of a standard 

dilution of spores that were then spread on a plate for counting.  The spacing of the 

spores was inherently irregular on the plate.  Because of this distribution, it was difficult 

to determine the exact temperature exposure to each spore.  This issue was compounded 

by the fact that the laser line itself experiences its own temperature profile. Although the 

peak laser temperature was adequately defined along the center, the spores outside this 

center were exposed to fractions of the peak power which was much harder to determine.  

Furthermore and most important for this work was the fact that once the spores 

germinated, areas of congestion experienced overlapping of vegetative cells obscuring 

the ability to make accurate visual counts.   

The small laser spot size dictates that improvements to this method still employ a 

microscopic count method to verify a short time temperature profile.  In order to do this, 

spores must be separated by a distance greater then or equal to the size of the largest 
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expected colony growth at the time of the measurement.  The spore separation must also 

account for the laser beam’s inherent temperature profile. 

The focus of this research was to gather enough data to statistically verify the 

lethality profile of B.a. and B.t. spores exposed to a series of time and temperature 

profiles using an optical microscope method consistent with the laser killing method 

developed by Goetz.  This was done by accomplishing a series of smaller milestones: (1) 

design and manufacture a slide surface that separates spores; (2) develop heating 

procedure to expose the separated spores to high temperatures within the  limited 

duration of under a minute; (3) compare the thermal susceptibility of B.t. compared to 

B.a. at these short time exposures; (4) determine spore survival rate dependence on heat 

exposure time; (5) and finally to verify ability to repeat experiment and gain enough data 

to statistically support conclusions.  An additional advantage by achieving theses goals 

was found to be the capacity to measure spore germination times and outgrowth of the 

survivors. 

The start point was the design and manufacture of glass slide platform that 

supported both colony counting needs and limited exposure uncertainty.  The traditional 

spore viability test methods involve the dilution of spores on a standard count plate. 

There are several acknowledged limitations with this method.  First, estimations are made 

in the amount of spores present since they are numerous in the solution.  Secondly, 

counting colonies once germination begins is a very laborious undertaking.  Not only are 

the spores small, approximately 1 micron in diameter, but once germination occurs the 

resulting overgrowth and matting quickly obscures the field of view for the observer. 
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  The planned approach to address these issues in this work was to place the spores 

on a slide specifically designed to separate spores.  Divots or holes were chemically 

etched into glass slides using a microlithography technique.  The size of the divots was 

about 3 by 3 microns with a depth of about a micron.  They were placed on a regular grid 

pattern.   The concept was a simple one.  The spores were spread out over the surface of 

the developed grid where the spores found a place in each divot like an egg-carton.  

Excess spores were swept from the higher surface. 

The separation distance of spores in their respective rows addressed the problems 

of colony counting.  This technique alleviated the practice of estimating spores present on 

the slide. In essence, one hole was filled with a limited number of spores. Ideally that 

number would be limited to only one spore per hole, but that goal was never repeatedly 

achieved in this experiment.  The set distance also prevented the visual interference 

caused by overgrowth by giving each spore ample room to germinate.  The best method 

to encourage the spores to both find and settle into a divot and removal of the excess 

surface spores was identified after numerous experiments.   

Heating of the spore laden platforms was accomplished using a small ceramic 

furnace.  A silicon nitride base provided a uniformly heated surface which ensured a 

uniform temperature exposure for the entire platform surface. Surface temperature was 

measured using a thermocouple.  The minimum time exposure was 5 seconds due to the 

physical limitation presented by this manually operated system.  The times of thermal 

diffusion through the 0.17 millimeter thick platform was very fast compared to the 

exposure time. 

 

6 



  

This method of heating was used throughout this experiment.  First, both Bacillus 

spores were exposed to different temperatures and times to determine their kill threshold 

for that particular spore preparation. Once separate data was collected for each species, 

the results were compared to verify their heat response comparability.  After that, the 

micro-etched platforms were used to more closely measure the heat induced response of 

Bacillus anthracis spores as they approached the predetermined kill threshold point. 

 

 

7 



  

II. Literature Review 
  

The Genus Bacillus  
 

The members of the Bacillus genus can be readily found in nature, most notably, 

in a wide variety of soils to include hot or cold, acidic or alkaline, desert or fertile or even 

in the floors of both salt and fresh water bodies.  Bacillus are gram positive, rod- shaped 

aerobic organisms.  (Logan & Turnbull, 2003: 445)  When they grow they form colonies 

between 2 and 7 millimeters in diameter (Logan & Turnbull, 2003: 454). The common 

characteristic of all members of the Bacillus genus is that, in the presence of oxygen, they 

will produce endospores.   These endospores become the inactive, dehydrated cells which 

are resistant to environmental conditions.    

 

Bacillus anthracis 

Bacillus anthracis is well known for several reasons.  First, it was isolated in 1877 

by Robert Koch and used to establish his postulates for defining a causative relationship 

between microbes and disease.  (Willet, Joklik, Amos, & Wilfert, 1992: 633) Later in 

1881, Louis Pasture tested his live bacterial vaccination principles using Bacillus 

anthracis. (Mock & Fouet, 2001:661)  Lastly and most notoriously, Bacillus anthracis is 

the etiological cause of the disease known as anthrax.  Anthrax is generally a disease 

known to infect grazing animals.  However, humans can contract it through close contact 

with these herbivores’ hide, wool or fur.  Anthrax has been suspected as the source of 

several plagues throughout history and may be the Sixth Plague mentioned in the Biblical 

Book of Exodus (Chapter 9, Verses 8-12).  More recently, anthrax has been weaponized 
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for use as a biological weapon.  The first recorded use as a weapon was in 1915 when 

German agents in the U.S. injected horses, mules and cattle being shipped to Europe with 

the anthrax bacterium.  There is evidence that Japan tested anthrax as a biological 

weapon against humans is 1937. The United Stated started development of anthrax as a 

biological weapon in 1943. (Anonymous; Weaponization of Anthrax ) 

When the bacteria begin to grow, they form a series of rods that appear squared at 

the ends.  These rods are about 1 to 3 microns in diameter and between 5 and 10 microns 

in length. (Willet et al., 1992:633) Ellipsoidal spores are formed when the vegetative cells 

are exposed to special conditions causing sporulation.  Figure 1 below shows a gram 

stained sample of B.a.  Note the forming endospores within some of the vegetative cells. 

 
 

 

Vegetative Cell 

Endospore 

Figure 1. Gram strain of Bacillus anthracis 1500X. The cells have characteristic 
squared ends. The endospores are ellipsoidal shaped and located centrally in the 
sporangium. The spores are highly refractile to light and resistant to staining. // 
textbook of bacteriology.net 
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Bacillus thuringiensis 
.       

Bacillus thuringiensis is also a well known member of the Bacillus genus.  After 

its vegetative cell reaches maturity, it forms a rhomboidal crystalline protein as a natural 

by-product.  It was discovered in the early 1950s that this protein is potent toxin to 

silkworms and caterpillars (Gould & Hurst, 1969: 495-509). This toxic effect to insects 

made it a candidate for use in natural insecticides.  It continues to be a popular additive to 

many pest control formulas.  Compared to its cousin B.a., it is slightly smaller. The 

vegetative cells of B.t. are approximately 1 micron wide and 5 microns long.   

The Bacterial Spore 
 

In response to an unfavorably environment, both Bacillus anthracis and Bacillus 

thuringiensis cells achieve a dormant structure commonly known as a spore. While in this 

state the bacteria display a distinct lack of metabolic activity. In this state the organisms 

are extremely resistant to changing environmental factors.  Studies have shown resistance 

to such factors as temperature, pressure, ultraviolet (UV) radiation, and even some 

chemical agents.  Although little activity takes place, there is evidence of  some responses 

to environmental changes that cause the spore, while still dormant, to change shape, size, 

flexibility, or chemical composition. Also while in this dormant state the spore remains 

ready to grow again when conditions become favorable. Research suggests that the 

spores possess “an alert sensory mechanism which is able to respond to specific 

germinants within minutes” when circumstances present themselves allowing for 

germination (Leuschner & Lillford, 2001: 36) which implies that some of the proteins are 

functional even in this dormant state.  
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The Spore Structure 
  

A series of concentric shells compose the protective coating surrounding the 

spore. These layers protect the genetic material in two ways.  First they lock the DNA in 

an inactive, crystalline, desiccated, and stable state. This desiccation contributes to heat 

resistance and dormancy of the spore.  Second, the hard outside shells serves to prevent 

toxic molecules from reaching the encased DNA. (Driks, 2003:3007). Figure 2, below, is 

an illustration of this structure. 

Inner Forespore Membrane 
Forespore Membrane Cortex 

Spore Coat 
Core 

Exosporium 

 
Figure 2. Structure of a Bacillus Spore. The spore can be broken down 
into a series of protective layers.  Each layer plays a part in protecting 
the dormant spore by restricting the movement of water molecules and 
keeping toxic molecules from reaching the DNA housed in the core. 

 

   
 

The outermost layer of the spore is called the exosporium. The major components 

of the exposporium are protein, lipid, and carbohydrate (Mock & Fouet, 2001:651). 

However, very little is known about its function. Since some members of the Bacillus 
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genus do not have an exosporium (e.g. Bacillus subtilis) but are nevertheless resistant to 

the same environmental stressors it is hypothesized that its role is more niche 

accommodation than protection. (Driks, 2003:3007). Indeed both B.a. and B.t. germinate 

without an exosporium.  In support of this accommodation hypothesis, filamentous 

appendages called pili can cover the surface which are thought to aid in spore attachment 

(Mock & Fouet, 2001:651).  

The spore coat lies directly beneath the exosporium (Driks, 2003: 3007). This 

region serves as a barrier against large toxic molecules. It is composed of two distinct 

layers.  The outer layer is thick while the inner layer is banded. The coat has been shown 

to include over 25 proteins (Driks, 2003: 3008). These proteins may also play a role in 

germination (Babyan & Setlow, 2002: 1219).  

Delving deeper is a layer known as the forespore membrane (Driks & Setlow, 

2000: 193). Like the exosporium, little is known about this membrane and its function.  

Next is the cortex. The cortex is a tight fabric that keeps the DNA dry by forming 

a boundary layer around the core. This boundary allows small molecules, like water, to 

pass through. The core remains essentially dry, however, because of the constricting 

action of the cortex. What little water that remains in the cortex plays a part in the spore’s 

susceptibility to thermal damage. The peptidoglycan strands found in this region allow 

the cortex to both expand and contract in response to ionic and pH changes sensed by the 

spore (Driks, 2003: 3007). It must be noted that a thin layer of this peptidoglycan will 

become the initial vegetative cell wall once germination occurs (Popham, Helin, Costello, 

& Setlow, 1996: 15405).  

Lastly, the final barrier is referred to as the inner forespore membrane. Almost 
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nothing is known about this final boundary before the core. The core is where the spore 

maintains its genetic material to include the nucleoid, enzymes, and ribosomes (Driks & 

Setlow, 2000: 193). Several small acid-soluble proteins also reside within the core and 

protect the DNA from heat and UV radiation (Driks, 2003 3007). 

 
Sporulation 
 

 The depletion of nutrients such as carbon or nitrogen, prompts Bacillus to form 

spores (Setlow & Johnson, 2001:34).  These spores grow readily in a culture, natural soil, 

and animal carcasses. (Willet et al., 1992) Sporulation can be divided into eight stages.  

All of these stages can take place within eight hours. A brief discussion of these stages 

follows. For clarification it must be noted that the term “endospore” is used at the initial 

point when the spore is being constructed inside the vegetative cell (Setlow & Johnson, 

2001: 35).  

The eight stages begin with the vegetative cell at Stage 0.  Here chromosomes are 

replicated into two separate nucleoids. (Setlow & Johnson, 2001: 36). An axial filament 

is then formed from these two nucleiods in Stage I.  

   Next, in Stage II, the development of the forespore is initiated with the formation 

of a double membrane septum which divides the cell in two with each half receiving one 

of the two nucleoids. The two cells consist of a mother cell and the new forespore, with 

the forespore being the smaller of the two portions. A further division will eventually 

occur and the outer of the two membranes become the forespore membrane, while the 

inner will become the inner forespore membrane once the spore is fully formed (Setlow 

& Johnson, 2001: 36). The nucleoid inside the new forespore condenses on its way to 
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becoming the spore core.  

   At Stage III, the mother cell engulfs the forespore and the prespore protoplast is 

formed. Next, in Stage IV, the cortex is formed.  Peptidoglycan is deposited between the 

double membranes. It is during this stage the dehydration within the spore begins (Setlow 

& Johnson, 2001: 36). The space between the membranes will become the fully formed 

cortex. The germ cell wall forms between the cortex and the inner forespore membrane.  

At Stage V (coat formation), an inner spore coat protein is deposited on the 

surface of the outer forespore membrane  (Setlow & Johnson, 2001: 36). Next in Stage 

VI the spore matures and deposits another outer spore coat on the surface of the inner 

spore coat (Setlow & Johnson, 2001: 37). The spore now has accumulated the dipicolinic 

acid in the spore core which is synthesized by the mother cell (pyridine-2,6-dicarboxylic 

acid or DPA) (Setlow & Johnson, 2001: 37). The dipicolinic acid protects the spore DNA 

from extreme environmental stresses.  

At its core the spore is dehydrated. The permeability of the membranes is set. 

Dormancy is reached. The final stage is when the mother cell lyses and releases the 

mature spore into the environment (Setlow & Johnson, 2001: 37). Below is a depiction of 

this eight stage process, Figure 3 (Setlow & Johnson, 2001: 35; and Driks & Setlow, 

2000: 191-210). 
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Figure 3. Stages of Sporulation (Goetz, 2005:13). Depletion of nitrogen or carbon 
results in the vegetative Bacillus cells forming an endospore inside the cell itself.  
The cell forms this endospore in a series of eight distinct stages that replicates 
genetic material, divides that material, and creates the protective spore coat while 
dehydrating the endospore’s core before releasing it into the environment. 

 
 
Germination. 
 

When the spore becomes vegetatively active again germination is said to occur. 

Germination has been defined as “the change from a heat-resistant spore to a heat-labile 

entity which may not necessarily be a true vegetative cell” ( Halmann, M. 1962; 1187).  

This change is considered to be a biological response to the presence of specific 

chemicals such as alanine. It has been suggested that L-alanine dehydronenase might be 

the chemical bonding site triggering alanine deamination that might be the first step in a 

germination process.  However, it is not known whether it is this chemical event or 

subsequent enzymatic reactions or a combination that actually induces germination.  

Observation of a physical manifestation of this response occurs after a lag period in the 

studied spores suggesting that germination is a result of a multi-step metabolic chain. ( 

Halmann, M. 1962; 1187)  

Like sporulation, germination can also be broken down into sequential stages.  

Here there are only three: activation, germination, and outgrowth. A depiction of these 

stages is shown in Figure 4.   
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Activation is triggered by heat or the presence of certain chemicals and is the only 

stage that is reversible if the environment reverts to a hostile state.  This stage is usually 

prompted by mild heating of approximately 65 º Celsius for less than an hour.  This 

activation is routinely done in laboratory spore experiments. The actual time and 

temperatures vary depending on each laboratory’s standing procedures. Although 

structural changes are not directly observed in this stage, the appearance of the spore coat 

becomes mottled and the contained cytoplasm becomes less granular. (Moberly, Betty J. 

1966; 221) 

Germination terminates the dormant spore’s cryptobiotic state. It occurs when the 

spore comes into contact with many types of nutrients as well as several non-nutrient 

stimulants.  The result is the initiation of a breakdown of macromolecules and excretion 

of spore substances such as dipicolinic acid, calcium, and peptides.   This stage does have 

observable physical events.  The spore coat remains intact, but the cortex dissolves as the 

core swells, filling the exosporium.  This is a key step in spore rehydration. The inner 

forespore and forespore membranes become more distinct and begin an infolding typical 

of an active cytoplasmic membrane.  Initially, the cytoplasm and nucleoplasm are mixed, 

but later separate into groups of ribosomal granules and DNA strands. (Moberly, 1966; 

221) 

Finally, outgrowth occurs when the spore synthesizes the proteins and structural 

components necessary to become a vegetative cell.  New macromolecules are synthesized 

as the new cell emerges and divides. The core wall thickens to become the vegetative cell 

wall.  Mesonomes appear near the in growing septum that marks the dividing point. The 

most notable change is the elongation and enlargement of the cell.  Often remains of the 
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outer part of the old spore coat and the exosporium are found within this new cell. Cast 

off vestiges of the spore can also be detected in the surrounding environment.  

Occasionally, fission imbalances occur and there are cells that do trisect. (Moberly,  

1966; 221,226 )  In its vegetative cell form, the bacteria’s increased heat resistance and 

hardiness are gone. (Willet et al., 1992: 72) 

 

 
 
 
 
 
 
 
 
 
 1 2 3 4 5 
 
Figure 4.  Illustration of Germination.  (1) is the dormant spore with the internal 
structures as seen in Figure 2. (2) is the activation stage where the spore coat takes 
on a mottled appearance and the cytoplasm is more opaque. (3) is the start of the 
germination stage were the core swells, the cortex and inner membranes dissolve, 
and the cell wall thickens.(4) is the later stage of germination where the cell enlarges 
and elongates, the ribosomal granules and DNA strands separate and an in growing 
septum appears at the division point. (5) is the outgrowth stage where the septum in 
completed elongation is completed and vegetative cells exist. 
 

Damaging Spores with Dry Heat 

  As stated earlier, bacterial spores are resistant to changes in temperature.  

However, damage is possible with either extremely high temperatures or prolonged low 

temperature exposure. By analogy with thermal inactivation of vegetative cells, threshold 

damage mechanism may center on hydrolysis-type DNA damage or by irreversible 

dehydration of the proteins that assist in germination within the spore core.   This is 
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consistent with better known damage processes in fully vegetative cells.  However, there 

is little currently known about these processes in spores.   

Two types of DNA hydrolysis reactions are depurination and deamination are 

most important. In deamination, an amino group from one of the DNA bases is removed. 

For example, the removal of the amino group from a cytosine base may give rise to a 

uracil or thymine base instead which would pair with adenine when the original code 

would attract a guanine base.  This change in the DNA sequence can result in future 

damage during DNA code replication. Thus a change in the DNA base code would both 

propagate and replicate as the essential cell proteins would be improperly produced or not 

produced at all because of this DNA damage.    

Depurination is a more common event and is more harmful because it leads to a 

high frequency of mutations. The higher the temperature applied to the spore, the greater 

the probability of depurination.  It occurs spontaneously, and is accelerated at high 

temperatures. During this event, either an adenine or guanine is severed from the 

deoxyribose chain leaving the chain backbone intact. Missing the base pair missing 

prevents the DNA strand from matching up with the other half of its double helix. The 

correlation of spore water content in the core and thermal sensitivity supports the 

postulate that the thermal inactivation threshold mechanism is DNA hydrolysis.  Indeed, 

the water content within the spore’s core decreases with higher sporulation temperatures, 

confirming greater thermal resistance. 

The activation energy required for such DNA hydrolysis should not vary unless 

there was a significantly different damaging process.  If there was a change in the activity 

of the water within the spore, the rate of hydrolysis damage changes.   This model of 
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inactivation focuses on the change to the activity of water and is outlined below.  We 

account for the thermal breakdown of the DNA in compounded by the stress of 

hydrolysis in Equation 1 below. 

 

{ } { ][][)(][)(][
221 DNAOHTkDNATk

dt
DNAd

∗∗−∗−= }      (Equation 1) 

 
where  

• [DNA] is the information content of the contained DNA 
• [H2O] is the water activity inside the spore coat 
• k1(T) is the rate coefficient for thermal damage exclusion of hydrolysis 
• k2(T) is the rate coefficient for hydrolysis damage of DNA 

 
 

Since the hydrolysis reaction rate increases with increasing temperature, a potential 

model for thermal inactivation of these bacterial spores is based on an Arrhenius 

relationship. This model assumes that there is a threshold response. In other words, if 

thermal induced damage accumulates above a set point, the spore will die. The 

temperature dependence of an Arrhenius rate constant is shown below.  
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where  
• k is the first order rate constant 
• A is the Arrhenius pre-exponential factor (which has very weak temperature 

dependence) 
• E

a 
is the activation energy (Jmol

-1
) 

• R is the gas constant (8.314 Jmol
-1

) 
• T is the absolute temperature (K).  
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Integrating Equation 1 and representing the initial information on undamaged DNA 

as [DNA]0 we get Equation 3 below. 
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Then evaluating Equation 3 assuming a constant average water activity and 

temperature results in Equation 4. 
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Letting [DNA]kill represent the a “kill’ threshold point at which the accumulated 

DNA damage is sufficient to prevent germination, Ckill  is defined as follows. 
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Only a small fraction of accumulated damage to the DNA sequence results in a 

high probability of kill.  Ckill is then approximately equal to the fraction of DNA damage, 

because . xxCkill −≈−= 1ln

Making an additional assumption that the activation energy required for damage 

to DNA are approximately the same regardless of the thermal inactivation mechanism 

involved, then temperature and time are related to the DNA damage fraction by Equation 

6.   
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Models for Dry Heat Inactivation  
 

A great deal of research has been done to examine the response of various 

Bacillus species to temperatures stress.  However, the heat exposure times mainly exceed 

one minute. The data from this longer time research is valuable for trend analysis. This 

compilation was discussed thoroughly in the work by Goetz (Goetz, 2005). 

Spotts-Whitney et al. collected a comprehensive review current literature which 

dealt with the inactivation of Bacillus anthracis. The portion of the survey which dealt 

with spore heating is included below in Table 1 (Spotts-Whitney et al., 2003: 624).  

Table 1. Heat Inactivation of Bacillus anthracis Spores from Spotts-Whitney et al 
Temperature Time Inoculum Size Inactivation Effect

Boiling    
100⁰ C 10 min 3x106 Sample Sterilized 

 5 min 7.5x108 Sample Sterilized 
Moist Heat    

90⁰ C 20 min 1.2x106 Sample Sterilized 
90⁰ C to 91⁰ C 60 min 3x108 Spores Detected 

100⁰ C 10 min 1.2x106 Sample Sterilized 
100⁰ C to101⁰ C 17 min 1x105 Sample Sterilized 

105⁰ C 10 min 3x106 Sample Sterilized 
120⁰ C 15 min 2.4x108 Sample Sterilized 

Dry Heat    
140⁰ C >90 min 6x103 to 1.2x104 Sample Sterilized 
150⁰ C 10 min 6x103 to 1.2x104 Sample Sterilized 
160⁰ C 10 min 6x103 to 1.2x104 Sample Sterilized 
180⁰ C 2 min 6x103 to 1.2x104 Sample Sterilized 
190⁰ C 1 min 6x103 to 1.2x104 Sample Sterilized 
200⁰ C 30 sec 6x103 to 1.2x104 Sample Sterilized 

 
 
 

For dry heat the shortest time frame explored was 30 seconds. Temperatures 

required for sample neutralization were at least 200ºC. Goetz plotted this compilation of 

data from several experiments in one graph as shown in Figure 5 (Goetz, 2005:23).  The 
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inactivation temperatures have a reasonably linear fit when heating time is on a 

logarithmic scale. Fernelius et al. measurement of B.a. survivability. While Molin and 

Östlund measure Bacillus subtilis, (B.s.) (Molin & Ostlund, 1976: 557).  However, as 

discussed earlier, each species of Bacillus spores should exhibit very similar resistance to 

heating, so it is assumed that their results would be comparable to work done using B.a. 

These variations in temperature responses may be attributed to varied sporulation 

conditions of a particular Bacillus organisms. Heat resistance of spores can be greatly 

affected by environmental conditions during the sporulation process. Temperature, 

humidity, and time spent at each sporulation stage can influence a spore’s ability to 

withstand heat (Faille et al, 2002: 1930-6). For this reason, all the conditions ranging 

from storage to incubation of the B.a. and B.t. spores in this research were identical. 
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Figure 5. Plot of Dry Heat Inactivation Data for B.a. and B.s. from three different 
sources.  The diamonds represent the dry heat inactivation of B.a. recorded by 
Spotts Whitney et al as shown in Table 1.  The squares are the 99% inactivation for 
B.a. from the Fernelius et al model.  The triangles are the dry heat inactivation data 
for B.s. reported by Molin and Ostlund.  (Goetz, 2005:23) 
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Figure 6. Plot of Dry Heat Inactivation Data Plotted in Arrhenius Style using the 
same source data found in Figure 4 above. (Goetz, 2005:23) 
 

Figure 6 shows the Arrhenius-style plot of the same data displayed in Figure 5 

(Goetz, 2005:23) as predicted. The Arrhenius plot also shows a linear relationship 

between log heating time and inverse heating temperature.  It is evident that temperature 

exposures for these long times do support the idea of a thermally activated Arrhenius rate 

reaction within the spores having a constant activation energy over three orders of 

magnitude of heating times.    
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III. Methodology 

Overview 

This research involved the development of a reliable method to create micro-

etched   standard glass cover slips that would separate Bacillus spores enough to aid in 

germination and growth measurements.  This section is a compilation of tested and 

successful techniques to achieve that goal.  Exact heating experimental set up for growth 

experiments using these platforms are also discussed in detail.    

 

Preparation of Glass Cover Slips 

The slides chosen to hold the B.a. spores are Gold Seal Cover Glass.  These 

silicate glass rectangles are normally used as cover slips over the larger glass microscope 

slides.  They are 22 millimeters wide and 40 millimeters long with a thickness between 

.13 and .17 millimeters.  They were chosen for several reasons.  First, their thinness 

brings the spores closer to the heated silicate carbide heat sink thereby reducing 

temperature gradient differences that would result in the much thicker traditional glass 

slides.  Secondly, their small size was much more compatible with the clean room 

equipment used to prepare the surface making manufacturing easier.  Third, once the 

sample was inverted onto the agar plate, the extreme thinness of the cover slips made 

vegetative cells easier to see through the microscope.  However, a drawback to their use 

was their fragility in normal handling.  Laboratory safety required the use of gloves while 

handing the cover slips to prevent cuts.  Add to this the difficulty in picking them up with 

forceps, and breakage occurred often, especially around the edges.   
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The method used to create a specialized sample slide capable of separating and 

holding spores was wet chemical etching.  This procedure entailed several steps in order 

to prepare the glass surface to be etched.  Cleanliness of the surface, as well as an even 

coating of photo resist was paramount to this preparation.  With that fact in mind, all the 

work done to both prepare and etch the cover slips was conducted in the Clean Room 

located at AFIT.  Both the application and removal of the photo resist followed the 

procedures outlined in the Standard Photolithography and Pre-Metallization Recipes for 

EENG 717 Laboratory.  However, through trial and error in working with the glass, some 

modifications were made to the time requirements.  All such modification involved an 

increase in suggested exposure times are indicated within this document. 

First, both sides of the cover slip were cleaned.  To accomplish this, the cover 

slips were placed on a Solitec Model 5100 Manual Single-head Spinner system made by 

Wafer Processing Incorporated.  The spinner is shown in Figure 7.  The cover slips were 

centered on a chuck that held the cover slip in place with a vacuum during the spin 

cycles.  While spinning at a rotation speed of 4000 RPM, each cover slip was first rinsed 

with acetone (CH3COCH3) followed by a second rinse with methyl alcohol (CH3OH).  

They were then blow dried with nitrogen gas.  Finally, each cover slip was placed on a 

hot plate set at 110 º Celsius for 2 minutes.  This last drying step ensured the complete 

evaporation of any remaining solvents.   This cleaning process was repeated again for the 

remaining side.  At this point, the side of the cover slip that was cleaned last was 

identified as the side that would be etched.   
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Figure 7. Solitec model 5100 Manual Single-head Spinner.  The large vacuum chuck 
in the center holds the glass cover slip firmly in place while the chuck rotates at the 
selected RPM.  The spinner well is covered in aluminum foil for ease of cleaning as 
excess photo resist is deliberately flung off the spinning surface by centripetal force.  
A small drain below the chuck allows excess photo resist to flow into a collection 
container for proper waste disposal. 
 

Each cover slip was assigned a number.  This number was manually etched with a 

diamond stylus on the back corner.  Through every step of the cover slip’s lifetime it was 

tracked using that number.  As a result of experimentation, the age of the photo resist 

mixture as well as its accumulated time on the cover slips surface prior to development 

proved to be critical.  The photo resist tended to harden over time.  Its hardness directly 

effected how long the photo resist needed to be exposed to ultra violet light during the 

development stage.  The full details of the development process are addressed later in this 

section. Since each step was recorded by date and time for each numbered cover slip, 
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once this photo resist issue was discovered it was easily identified and adjustments were 

made accordingly. 

The last step in the preparation process was the applications of the photo resist 

itself.   The cover slips received a coating of Rohm and Haas 1818 photo resist.  The 

cover slip was again placed on the spinner and held in place on the chuck with a vacuum 

seal.  Photo resist was dropped on to the center of the cover slip with an eyedropper.  

Enough photo resist was used to completely cover are area approximately 1.5 centimeters 

square.  In order to ensure an even coat across the entire cover slip, the spinner was 

activated again to 4000 RPM.  The spinner has a ramp up time of a second before it 

achieved the designated speed.  Then the spinner held the cover slip at that revolution 

speed for 30 seconds.  After completing this coating step, the cover slips were again 

placed on a hot plate to soft bake at 110 º Celsius for 75 seconds.  At this point the cover 

slips were ready for exposure through the mask. 

 
Mask Development 
 

In order to create the divoted cover slip needed to support this method of Bacillus 

spore heating, a material chemical etching technique was used.  This technique involved 

several steps.  The first step was to design and create an ultraviolet light mask.  The mask 

was designed to transmit light through a geometric pattern of 3 by 3 micron squares.  The 

squares were set in a grid formation.  The entire grid area permitted 100 rows and 125 

columns therefore making 12,500 divots per cover slip.  The columns were separated by a 

distance of 500 microns.  Rows were separated by a distance of 250 microns.  An 

illustration of the mask is shown below in Figure 8. 
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Figure 8. Illustration of Mask Design. The mask was designed to separate the holes 
at set intervals.  The black area represents the part of the mask that was coated with 
metal which prevented blocked the UV light from reaching the photo resisted 
surface.  The white squares are the 3x3 micron areas where no metal coating was 
placed outlining the area where the photo resist was damaged by the light during 
exposure. 

 
 

The mask was then placed on a Karl Suss MEMS, Micro-Electro-Mechanical 

System, shown in Figure 9.  The photo resist prepared cover slip was mounted directly 

under the mask platform.  In this configuration the mask and the prepared cover slip 

made physical contact.   The cover slip was then exposed through the mask to ultraviolet 

light for 30 seconds. The light is reflected away from the cover slip by the metal coating 

on the mask while the light travels through the non-metal coated 3 x 3 micron squares. 

The ultraviolet light that gets through then reacted with the photo resist coating on the 

prepared cover slip.  Because of the wavelength of the light, the sharp corners of the 

squares were not exposed by the light waves so the resulting exposure area took on a 

rounded shape instead. Figure 10 shows photo resist covered cover slip with “circular’ 

exposure. 
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Figure 9. Karl Suss MEMS.  The mask aligner has a movable stage where both the 
mask and the cover slip platform are inserted under the UV lamp. This stage is 
adjustable in both the horizontal and vertical directions. The eye piece and camera 
allows the user to manually align the mask and platform surface horizontally. In the 
vertical plane, it is critical for the mask to make mechanical contact with the photo 
resisted surface to prevent the UV light from damaging the area surrounding the 
mask windows. 

 

 
 

Figure 10.  Magnification at 400x of exposed photo resist.  Although the mask is 
designed with square windows, the wavelength of the UV light is so long that it does 
not fit in the corners of the squares and therefore the resulting damage to the photo 
resist takes on a circular pattern. Here is a picture of that circular damage. 
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The next step in the etching process is the removal of the photo resist areas on the 

prepared cover slip that were damaged by the ultraviolet light exposure.  These cover 

slips were submerged in Microposit 351 developer solution.  This developer consists of 

5% sodium hydroxide, 10% sodium tetraborate decahydrate, and 1% inorganic borates 

diluted with water.  The developer was mixed with deionized water at a ratio of 1:5.  

Typical developer time for damaged photo resist removal is usually around 30 seconds.  

However, over the course of several development attempts it was discovered that 

exposure time to the 351 developer needed to be at least 2 minutes.  This is possibly due 

to the extremely small areas of the 3 x 3 micron “circles”. 

Once the photo resist was removed in these areas the actual etching step was next.  

In order to protect the even surface needed for heat conduction the back of the cover slip 

had to be protected from the etching solution.  To accomplish this, the cover slip was 

mounted to a regular glass microscope slide.   It was affixed to the sacrifice slide with 

additional photo resist.  This technique effectively kept the etching acid from reaching the 

back of the cover slips and causing the aforementioned damage.  Below is picture of this 

process. 
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Figure 11. Inverted exposed cover slip with photo resist "glue" surrounding edges.   
The exposed cover slip is inverted with more photo resist applied around the edges 
for a duel purpose.  First, this additional photo resist acts like a glue that will adhere 
the cover slip to a sacrifice slide.  Second, the photo resist is applied to the edges to 
create a barrier that keeps the BOE from etching the underside of the cover slip. 
 

After the sacrifice slides were prepared, the cover slips were ready for the acid 

etching step.    The fundamental reaction in the etching process is:  

SiO2 + 6HF →H2SiF6 + 2H2O. 

 The cover slips were immersed in buffered oxide etch solution (BOE).  The BOE 

solution is a made with six parts of 40% NH4F diluted with water mixed with one part 

49% HF diluted with water.  BOE was chosen over straight hydrofluoric acid since the 

solution allowed for a slower and therefore more controllable etch rate.  The BOE etched 

the glass cover slips where the photo resist was removed by the developer.  The glass 

remained intact and protected from the acid where the photo resist remained.  Cover slips 

were etched for 10, 15, and 20 minutes to determine both the etch rate and optimum hole 

size needed for spore capture.   
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Finally, the photo resist was removed.  Since the cover slips were essentially 

glued to the sacrifice slides, the slides needed to be soaked in acetone for more than 12 

minutes before the photo resist was dissolved enough to release the cover slips.  

Additional soaking time was then needed to remove whole of the underside photo 

resist/glue. Once the visible photo resist film was removed, the cover slips were wiped 

clean with more acetone followed by methanol. The final result was the glass cover slips 

with divots or holes etched in the grid pattern matching the original mask design.   

 

 

Figure 12. Two holes at 200x magnification.  These two holes are in a column.  The 
surface displays signs of the etching process as a series of concentric rings.  It is 
impossible to determine the depth profile of the hole from visual inspection with the 
light microscope.  

 
 
 
 
 
 
 

33 



  

SEM Verification 

After the holes were etched, a Scanning Electron Microscope (SEM) was used to 

view the holes.  Since the SEM requires a chargeable surface to create an image, a 

conductive coating was placed on to the etched platform’s surface.  Gold was selected 

because of its conductivity as the coating element, as well as its ease in its layered 

preparation using an evaporation technique.  In order to prevent the surface from building 

up too high a charge which would obscure the SEM image, a 25 Angstrom coating of 

gold was applied to the surface. 

This was a very revealing step in the platform development process.  First, it 

provided a method to measure the holes themselves.  This confirmed the published etch 

rate for the BOE on glass.  Second, it illustrated the physical evolution of the etch 

process.  The surface did not experience a uniformed etch.  Unlike a hole that would be 

drilled straight down that would result in a hole that resembles a cup, the BOE solution 

essentially puddled and etched the center of each hole dramatically while only gradually 

etching the edges.  The resulting hole shape resembled a funnel much more closely than a 

cup or a bowl. Figure 13 below shows this resulting shape. 
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Figure 13. SEM Image of a hole.  The scanning electron microscope was used to 
determine the depth profile of the holes.  From this view, the shape of the hole is less 
like a cup and more like a funnel where the hole is a gradual slope at the top and a 
dramatic sink at the center point. 

 

Spore Preparation 

Both the samples of B.t. and B.a. used in this research were obtained from Dr. 

Eric Holwitt of the Air Force Research Laboratories, Biomechanisms and Modeling 

Branch, Brooks City Base, Texas.  The samples were stored in the form of lyophilized 

spores and kept in glass culture tubes at room temperature.   

The spores were spread on nutrient agar plates.  They were incubated at 34 º 

Celsius for 48 hours.  The next step was to harvest those spores. Sterile water was 

pipetted onto the culture plate covering the plate surface.  Next the spores were mixed 

with the water using a spread rod until a thick film was visible above the agar base.   The 

resulting solution was pipetted into a centrifuge tube. 
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Spore Slurry Preparation 

In order to clean up the spores and remove the debris, the mixture was centifuged at 4000 

revolution per minute for twenty minutes.  At the end of this cycle the spores settled out 

at the bottom of the tube while the supernat rose to the top. The excess liquid was drained 

and more sterile water was pipetted in to return the tube to 6 ml.  A vortex mixer was the 

used to break up the spore pellet and re-suspend the spores in the water. This cycle was 

repeated three times.  After the last spin cycle the water was not replaced and the pellet of 

spores at the bottom of the tube was not re-suspended.  These cleaned spores were then 

stored in the refrigerator at 4 º Celsius until use, see Figure 14 below. 

 

Figure 14. Spore pellet located at the bottom of the centrifuge tube.  Spores were 
harvested from an agar plate and then placed in a centrifuge tube for cleaning.  
After each spin cycle the supernat was poured from the tube and refilled with sterile 
water.  This rinse and spin was repeated three times to remove cellular debris.  The 
final, cleaned spore pellet settled at the bottom of the tube. 
Application of Spores to the Cover Slip 
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The major hurdle of the project required developing a technique to get the 

Bacillus spores into these manufactured holes. The problem was simply a ratio issue.  

The amount of area on the cover slip that was a hole compared to the amount of surface 

area that was flat is less than 1%.  To that end, the spore solution had to remain at a very 

high concentration.   Finding the best method to accomplish this took several attempts.  

Brief discussions of these attempts are included in the Appendix. The final application 

technique addressed both the problem of putting spores down on the cover slip and 

getting a spore into a hole as well as the second problem of removing the remaining 

spores that were not in the holes off of the surface. 

The surface of the cover slips was first coated with a detergent wash.  

Commercially available Ivory soap shavings were diluted with sterile Millipore® water 

in a suspension of 2 grams soap to 250 ml water.  The detergent solution was then 

sterilized in the autoclave at 121 º Celsius at 15 psi for 15 minutes. The detergent solution 

was placed on the cover slips using a sterile pipette.  The solution was then rinsed off 

with pipetted, sterilized water.  The purpose of this was two fold.  First, any remaining 

detergent served to reduce the surface tension of the water in the spore solution, 

permitting easier access to the etched holes.  Second, it helped to coat the cover slip 

surface to provide an additional layer that aided in spore removal that will be addressed 

in the following passages. 

The cleaned but undiluted spore slurry was pipetted directly from the centrifuge 

tube and dropped on the cover-slip.  Next the slurry was spread using a sterile wooden 

tooth pick over all the holes.   Any water on the spore laden cover slips was then allowed 

to evaporate.  Since Bacillus spores are not motile, the evaporation of the water forced 
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the spores to settle directly on the cover slip surface.  Figure 15 below, is a representation 

of these steps.  Next, in Figure 16 are pictures that show that the spore slurry employed 

by this method was thick enough to indeed cover the surface. 

 

 

Dried spores 

Wet slide 

  

Figure 15. Illustration of Spore Application over holes.  The wet spore slurry was 
undiluted when it was pipette into a large droplet that covered the etched hole grid. 
The water then evaporated and the spores were allowed to settle directly on to the 
slide surface.  The dried spores appeared as an opaque film covering the slide 
surface. 
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Holes 

 

Figure 16. Cover slip with dried spores covering holes.  The pictures were taken at 
200x and 400x magnification respectively.  The high concentration of spores in the 
slurry improves the probability that a spore will find a hole on the surface.  
However, even at this high magnification it is difficult to visually confirm that there 
are spores in the holes. 
 
 

39 



  

Cleaning all of the extra spores off the surface was the next step in sample 

preparation.  The trick to this process was to remove the surface spores while avoiding 

disturbing those spores already in the holes. This also took several attempts to solve and 

methods are also discussed in the Appendix.  The final technique used was mechanical, 

while avoiding marring the glass surface.  

  The spores were sheared off of the surface using successive wipes with both a 

plastic edge and a paper one.  Plastic was chosen since the glass surface of the cover slip 

was prone to scratching which hindered spore removal efforts.  The plastic edge was 

made by cutting a laboratory weight boat into approximately 3 inch squares.  The squares 

were folded over for strength and the manufactured edge was used to shear the spores off 

the surface.  This took several wipes.  Once the gross removal of spores was 

accomplished, the succeeding wipes were made with folded weigh paper.  Weigh paper is 

non-absorbent, preventing potential removal of spores by water molecule attraction from 

the holes.  The cover slips were visually inspected by light microscopy at multiple 

intervals for surface cleanliness. 
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Figure 17. 400x magnification of Cover slip after the surface has been cleaned with 
successive mechanical shearing. The surface has been successfully. Note the 
presence of spores in the hole is still difficult to visually confirm. 
 
 
Agar Preparation 
 
 

The spores were grown on nutrient agar.   The agar used for this research was 

manufactured by Criterion. This is a standard recipe for growing bacteria. The 

approximate formula is 15.0 gm agar, 5.0 gelatin peptone, and 3.0 gm beef extract.  The 

nutrient agar consists of common ingredients and stored as a powder.  The inclusion of a 

beef extract provides salts, vitamins, nitrogen, and carbohydrates the bacteria uses for 

growth activities.  A peptide is added to control pH.  The agar is a solidifying ingredient 

made from red seaweed.  The powder is prepared with heated distilled water and, once 

combined, is poured into sterile petri dishes.   

Normally, once the agar is poured into the petri dishes and reaches room 

temperature it is ready for use.  For this application it was discovered the water content of 

the agar was too high.  The water that allows the nutrients to move freely among growing 
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colonies also allowed the germinating Bacillus spores to move out of their holes and 

travel across the clean surface.  To alleviate this problem, the agar was allowed to dry out 

at room temperature for 36 hours before it was deemed ready for use as a growth plate. 

  

Heating in the Furnace 

  A standard laboratory ceramic box furnace was used to expose the sample of 

spores on the cover slip.  The furnace was a Vulcan Box Furnace Model 3-130 with 

programmable controls.  It has a temperature range of 50 º to 1100 º Celsius with 1º  

resolution.  This furnace was operated at a steady state temperature where it has a 

published temperature accuracy of ± 5 º Celsius.  The temperature uniformity throughout 

the oven chamber during steady state operations is ± 8 º Celsius.   

This accuracy range was too large for the purposes of this experiment, so additional 

modifications were made to the furnace chamber prior its use.  First, a smooth, 3 inch 

diameter puck made of silicon nitride (Si3N4) was centered in the base of the chamber.  

Silicon nitride was developed in the 1960s as a replacement material for metal engine 

parts with ceramics to allow higher system operating temperatures and efficiencies.  Its 

hardiness and ability to hold high temperatures without loss of structural integrity made 

this material perfect for use as a heat platform within the furnace.  Since uniform heating 

was important, this heated platform ensured an even, steady heat distribution to the cover 

slip while the furnace door was lifted to emplace or remove it.   See Figure 18 below. 
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Figure 18. Vulcan Ceramic Furnace Oven Chamber.  The oven door is hinged at the 
top which adds additional time to manipulate samples both into and out of the 
chamber.  The furnace can be set to run at a steady state temperature or adjust the 
chamber temperature at regulated intervals. 

 

A second addition to the furnace set up was a thermocouple.  The thermocouple 

wire was affixed directly to the puck surface to measure the temperature of the surface 

coming in contact with the sample cover slip.  The thermocouple compares the thermal 

gradient of two different types of wires to convert thermal potential to electric potential.  

The relationship between voltage and temperature can be approximated by the following 

equation; 
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where  is the material coefficient.  The thermocouple used for this was a type K, the 

most commonly used general purpose variety.  The wires used in this type were both 

nickel alloys.  One wire was made of chromel  (90% nickel and 10% chromium) while 

the other one was alumel (95% nickel, 2% manganese, 2% aluminum, and 1% silicon).  

The measurable temperature range of the type K is from 0 º to 1100 º Celsius.  The 

accuracy tolerance however varies with temperature.  For most of the experiments which 

are between 0 º and 375 º Celsius the accuracy is ± 1.5 º Celsius.  However, at 

temperatures above 375 º Celsius the accuracy changes proportionally to the temperature 

with the formula: 

0.004 ( )Tolerance Temperature Celsius= ± ∗          (Equation 8) 

 The thermocouple wires were held mechanically in contact with the puck surface using 

copper mesh tape and steel washers.  The thermocouple was attached to FLUKE 298 

multimeter which was operating in temperature mode.  

The sample cover slips were both placed on the puck in the furnace chamber and 

removed manually using two metal spatulas.  After repeated practice trials with a 500 

degree Celsius chamber temperature, lifting the chamber door and placing the sample on 

the puck took 3 seconds ± 1 second.  Removing the sample cover slip after it was heated 

took longer with an average of 4 seconds ± 2 seconds which also includes the lifting of 

the chamber door.  This made the thermocouple reading important.  Since the 

temperature reading of the box furnace is of the whole heating chamber, when the oven 

door is lifted the temperature reading would dip 10 ± 5 º Celsius and take 30 ± 10 
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seconds to return to the chosen steady state temperature.  However, since the interest was 

the surface temperature of the puck, this is reading the thermocouple provided.  After the 

chamber door was lifted the temperature reading on the thermocouple would drop 3 ± 1 

degree Celsius, but this would not happen immediately, unlike the oven measurement.  

The recovery time back to the designated steady state temperature was 5 ± 0.5 seconds 

which is the cycle reading time built into the multimeter. 

The thermal conductivity across the cover slip is determined using the Fourier’s 

Law for heat transfer by conduction. 

2 1T TQ k A
x
−

= ∗ ∗     (Equation 9) 

where 
•  k is the thermal conductivity of the material (Watt/(m* ºC)) 
• A is the surface area (m2) 
• x is the distance through the material (m) 
• T1 and T2 are the surface temperatures (ºC) 
 

This equation was used to determine the heat transfer through the glass cover slip from 

the puck surface to the spores.  Below is Equation 9 with the variable values for the glass 

and the cover slip dimensions.  The temperatures used were the highest furnace 

temperature of 180 ºC and room temperature of 25 ºC. 

( ) ( ) ( )3 3
3

180 250.8( ) 22 10 40 10
* 0

642

CWattsQ m m
m C m

Q Watts

− −
−.17 10

− °⎛ ⎞⎡ ⎤= × × × × ×⎜ ⎟⎣ ⎦° ×⎝ ⎠
=

 

The time of this heat transfer through the glass cover slip is therefore fast enough to 

consider it negligible for the purposed of temperature error. 
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Initial Furnace Trials with Scratched Cover Slips 
 

In order to narrow the experimental temperature range, preliminary tests were run 

to determine possible time and temperature threshold points. These tests, using the 

furnace heating procedures, recorded only if there was spore germination.    For these 

preliminary tests, in the interest of ease and material conservation, differently designed 

cover slips were used to hold the spore samples. 

The cover slips holding the spores were the same Gold Seal ones described 

earlier; however, instead of the etching holes, silicon carbide sandpaper was used to 

scratch grooves into the surface.  Although the grooves were in irregular depths and 

patterns on these cover slips, the intent was to catch spores in these grooves and simulate 

the etched slides where the spores would also be located slightly below the glass surface.  

Since this arrangement does not lend itself easily to statistical analysis, the results of 

these tests were determined using only growth, any growth as the benchmark event. 

The spore solution was deposited on the cover slip in the same way described with the 

etched cover slip.  The spore solution was allowed to dry and the surface rinsed and 

wiped clean again as described before.  These sample cover slips were placed in the box 

furnace and heated at set intervals.  Figures 19 show these scratched cover slips. 
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Figure 19. Scratched slides with spores.  The silicon oxide sandpaper scratched the 
surface in a varied pattern.  The darker areas in the scratches were visual evidence 
of spores being caught in the grooves.  With this method the spores are spread 
irregularly throughout the scratched area and it was impossible to determine the 
amount of total spores present. 
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IV. Results and Analysis 

Chapter Overview 

This chapter contains the results of the experiments using methods described in 

the previous chapter, providing both numerical and visual results of analysis for timed 

heat experiments of Bacillus anthracis and Bacillus thuringiensis.   The first set of 

experiments dealt solely with the task of growing spores in holes.  Various methods of 

application and removal were tested before settling on the technique described in the 

previous section.  The measurement of success was determined visually. The criteria 

were simple.  First, the spore growth had to be centered on the holes which indicated that 

the spores were both in the holes and able to germinate there.  Second, since overgrowth 

was a stated problem, the area between the rows and columns had to be clear of excess 

spores.  Figure 20, below, shows the results of the successful techniques. 

 

 
Figure 20. Successful Growth in Holes.  This is the culmination of multiple attempts 
of both spore application and removal until a repeatable, reliable technique was 
developed.  The center of gravity for the growth of B.t. on this etched slide is clearly 
the holes.  The area between the columns is clear of excess surface spores.  
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Furnace Trials with Scratched Slides  

Overview 
 

The purpose of the initial heating trials using the scratched cover slips was to 

establish a baseline death response from both the B.a. and B.t. spores.  Since most of the 

previous research dealt with heat exposure times well beyond one minute, new data had 

to be collected.  Also, as had been mentioned earlier, spore preparation and water content 

greatly influences the death response.  No research used this method of non-diluted spore 

slurry so it was reasonable to expect the death response to differ slightly from predictions 

using other data.  This expectation of a different kill rate was validated with the first set 

of experiments. 

The next goal was to test the theory of using B.t. as a surrogate for B.a. in heat 

trials.  To this end, both the B.t. spores and the B.a. spores were stored, grown, prepared, 

and killed utilizing the exact same methods and environments.  This removed 

controllable variability between the Bacillus species and increased the confidence in 

continued use of such surrogacy. 

 
Heating  
 

Bacillus thuringiensis was selected because of its lower Bio Safety Level 

classification as the subject of the initial heat trials.  The focus of these trials was to both 

find the related temperature and time point where no spores were able to germinate after 

exposure.  Additionally, the B.t. was used to narrow the temperature range for subsequent 

trials with B.a. 
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The scratched cover slips provided a surrogate for the etched cover slips.  The 

spores seemed to get caught in the grooves, especially at line intersections.  The 

unmarred surface was also able to be cleaned in the proposed manner providing a 

separation between spores.  These characteristics made any vegetative growth easy to 

find. All slides were checked for growth after 5 hours of incubation at 34 º Celsius. The 

Figures 21 and 22 below show the spores in the grooves and subsequent growth. 

 
Figure 21. B.t. spore growth after 5 hours on scratched slide.  The spores tended to 
cluster at points were the scratched lines intersected.   Since vegetative cells grow 
linearly once the spores germinated, if they were close to a scratch they tended to 
stay in the groove until their mass or other cells forced them out. 
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Figure 22. B.t. starting growth after 3 hour along scratch.  This is the very early 
germination pattern of spores caught in a scratched grove.  As stated in Figure 21 
above, the vegetative cells tend to stay in the groove. 
 
 
 
The resulting data revealed by these trials for B.t. is displayed below in Figure 23. 
 

Kill Curve of B. t.  
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Figure 23. Kill Curve of B.t.  The B.t. spores were heated on the scratched cover 
slips at a steady state temperature at set time intervals.  The kill point was 
determined to be the timed exposure point where no spores germinated after five 
hours incubation. 
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The same heat trial was repeated using B.a. and this resulting data is displayed below in 
Figure 24. 
 
 
 

Kill Curve Plot of B.a.
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Figure 24. Kill Curve of B.a..The timed exposure at steady temperatures experiment 
was repeated using B.a. spores.  The same kill point definition was used.  
 
 

Looking at both of these Bacillus species together in Figure 25 the similarity in 

heat response is evident. B.a. as expected seems to be the more resistant to heat damage 

of the two, as predicted using other research data.  However, the temperature that death 

occurred was much lower than predicted with published data.  I suspect this is related 

differences in the preparation and storage of the spores. 
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Bacillus Kill Curves both B.a. and B.t.
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Figure 25. Bacillus Kill Curve of both B.a..and B.t.  Here are the kill curves for both 
species shown on the same graph.  The crossing point of the two curves around the 
10 second point was the focus of the next experiments on B.a. 

 
 

An additional question addressed by this test was whether the inactivation 

response is consistent with the Arrhenius relationship.  Figure 26 shows the same data 

plotted in an Arrhenius format.  Both B.t. and B.a. followed this relationship which 

supports the repeatability of this experiment. 

Arrhenius Plot of B.a  and B.t.
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Figure 26. Arrhenius Plot of B.a. and B.t.  Here are the kill curves for both species 
are plotted using the Arrhenius equation.  The data for both species supports the 
anticipated linear threshold relationship at these time intervals. 
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 The Arrhenius plot relationship shows the value of the slope of the trend-line 

is aE
R

⎛
⎜
⎝ ⎠

⎞
⎟ .  Using the line equations shown on Figure 26 for B.a. and B.t. the activation 

energy for the spores was calculated.  The slope of the B.a data is .  The slope 

of the B.t data is .  By using this slope relationship the activation energy for B.a 

is 

44.15 10−×

46.9 10−×

4 34.15 10R 8.314 3.45 10a
JoulesE slope
mol

− − ⎡ ⎤= × × × = ×= ⎢ ⎥⎣ ⎦
.  Doing the same for B.t. 

shown an activation energy of 4 35.74 10− −= ×6.9 10 8.314a
JoulesE slope R
mol

⎡ ⎤= × = × × ⎢ ⎥⎣ ⎦
. 

Heat Damage and Growth Trial 
 
 

The purpose of this experiment was to use the micro-etched cover slips 

capitalizing on their ability to separate vegetative growth to track changes in growth of 

Bacillus anthracis after heat injury.  The time of exposure was held constant at 10 

seconds.  This time was chosen based on the combination kill curves for these organisms 

as seen in Figure 26 above.  The ten second area is close to the point where the two kill 

curves cross.  The predicted kill temperature using the fitted curve was  

 
( )( )0572.01019.198 −∗ )  =173.7 º Celsius      (Equation 10) 

 
The temperature range was chosen to incrementally march the spores toward their kill 

threshold within the limits of the error that accompanies the temperature measurement.   

The result of this experiment provided additional data to augment the earlier 

findings.  Below is a repeat of the previous plots with this additional inactivation point.  

The results agree with the previous relationship curve.  See figures 27 and 28 below. 
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Bacillus Kill Curves both B.a. and B.t.
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Figure 27.  Bacillus Kill Curves of both B.a. and B.t. with additional data point for 
B.a. at the 10 second point.  The additional point improves the fitness of data from 
R2 = 0.9777 to R2 = 0.9888.   
 

Arrhenius Plot of B.a  and B.t.
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Figure 28. Bacillus Kill Curves of both B.a. and B.t. plotted in the Arrhenius style 
with additional data point for B.a. at the 10 second point.  The additional point 
improves the fitness of data from R2 = 0.9679 to R2 = 0.989.   
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Additionally, a blank sample was also tracked over this incubation period that was 

not exposed to any heat and was considered normal growth. 

Growth was measured by counting cells taken from random sample of holes 

across the cover slip. Data on growth was taken in 30 minute intervals after the 3 hour 

incubation time. Figure 29 below shows the results for surviving spores growing out of 

the holes.  The individual vegetative cells are visible.  Each cell was counted as a member 

of specific genetic line.  Each genetic line was counted and assumed to originate from 

one parent spore.  With this method of counting, only spores that germinated were 

counted.     At least twenty holes per data set were sampled.  The number of total genetic 

lines was recorded as well as the number of vegetative cells per each genetic line.   

All data was collected by visual microscope inspection as determined by the 

observer.  This method requires some subjective determinations of both genetic lines and 

number of vegetative cells present in each line.   Looking at the example growth in 

Figure 29, the data recovered from this sampling would be recorded as seen in Table 2. 

 

Table 2. Growth Data Sampling Illustration 
Genetic Line 1 2 3 4 5 6 7 8 

Number of cells 8 8 4 2 2 2 4 2 

Total Number of Germinating Spores 8 

Total Number of Vegetative Cells 32 

Error (s) ± 2.62 
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Figure 29. Measurable Spore Growth in Hole.  The generations appear as links in 
the chain.  The growth originates in the sink point of the etched hole and grows out.  
In this picture you can also see the shadowed edge where the hole begins with a 
gradual slope well outside the center sink.  The numbers correspond to the sampling 
example shown in Table 2. 
 
 
 

A manual count of each vegetative cells originating from a hole on the cover slip 

was taken at 30 minute time interval.  The number of vegetative cells per linear cell line 

for each time was then averaged.  The standard deviation among the growth was also 

determined for each temperature set at each time interval.  Any data point outside one 

standard deviation length of the average was dismissed as an anomalous outlier. The 

numerical results are displayed in Table 3. 
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Table 3. Growth Data for B.a.     
 Incubation time Incubation time Incubation time  
 180 minutes 210 minutes 240 minutes 

Temperature 
in º Celsius 

Average 
Generation 

Growth  ± σ 

Average 
Generation 

Growth  ± σ 

Average 
Generation 

Growth  ± σ 
No Heat 2.66 1.78 5 3.3 5.306 1.06 

161 0 0 1.5714 0.79 2.625 2.28 
165 0 0 0 0 0 0 
169 0 0 0 0 0 0 
173 0 0 0 0 0 0 
177 0 0 0 0 0 0 

 Incubation time Incubation time Incubation time  
 270 minutes 300 minutes 360 minutes 

Temperature 
in º Celsius 

Average 
Generation 

Growth  ± σ 

Average 
Generation 

Growth  ± σ 

Average 
Generation 

Growth  ± σ 
No Heat 7.522 3.56 7.607 8.94 9.5 4.18 

161 3.6 1.71 4.07 1.55 6.625 2.53 
165 3 2.07 3.5 1.63 6.38 2.48 
169 0 0 2.04 0.75 6.28 2.6 
173 0 0 1.17 0.73 2.076 0.64 
177 0 0 0 0 0 0 

                                                                                                                          
 
 

This data is consolidated in Figure 30. The growth recovery curves are all shown 

in descending temperature order below the normal growth expectation.  The higher the 

temperatures the longer the spores took to start to grow at all.  Eventually, those spores 

exposed to lower than 173 º Celsius appeared to recover and eventually returned to a 

normal growth.  The spores exposed to 173 º Celsius where the threshold point was 

predicted did eventually begin to grow, but the rate of growth was obviously slowed 

considerably. 
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Figure 30. Growth Response Plot.  Here is the consolidated data from the growth 
measurement shown in Table 2.  The top curve is the unexposed sample blank that 
records normal growth rate for the B.a. spores prepared for these experiments.  The 
descending curves show the injury recovery rate for each temperature.  At exposure 
to 177 º Celsius the spores were unable to recover. The errors in cell outgrowth are 
displayed as small bars with colors corresponding to their respective point.  The 
error regions overlap significantly and indicate that the points in many cases are not 
statistically distinguishable. 

 
 

The error for the growth data shown in Figure 30 and Table 2 was separately 

calculated for each point.  Since the data was collected as a random sample and each 

sample had a variable number of spores that germinated, the total number of germinated 

spores counted had to be considered in the error.  The error was calculated using the 

estimated standard deviation (s) of a finite set of data as defined by Equation 11. 
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 where 
• xi is the raw data values 
• xi

2 is the squared raw data values  
• N is the number of data points in the included data set 
 

Data points that were outside the 2.5s region for each data set were then eliminated based 

on the results.  The remaining data can be viewed with a 99% confidence interval.  

In addition to the error impact, there is other information not available because of 

experimental time constraints. The growth was monitored starting at the 180 minute 

point.  As depicted in Figure 30 above, the growth of the unheated spores had already 

started.  The actual growth point can only be predicted using the trend lines.  Also since 

the growth measurement stopped at six hours, there is a possibility that the spores treated 

at 177 º Celsius would eventually recover viability and germinate at a later time. 

Next, the trend lines for each temperature data set were used to estimate the point 

where germination started.  On Figure 30, this is the point where the trend lines cross the 

x-axis.   These estimated points were plotted in the Arrhenius plot style using the log of 

reciprocal absolute temperature exposure.  The Arrhenius model predicts that the time it 

takes for the spore to repair the damage caused by exposure to heat should appear as a 

linear relationship.  This relationship is indeed seen in Figure 31. 
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Figure 31. Heat Damage Recovery Plot.  Here is the estimated initial growth point 
data calculated from Figure 30.  The heat damage recovery shows a linear 
relationship as predicted by the Arrhenius model. 

 

This resulting compilation of data was reliably obtainable through the use of the 

micro etched platform.  The use of the current hole separation dimensions would need to 

be adjusted further apart if this counting method would be employed further than the six 

hour incubation time after which overgrowth of vegetative cells would again obscure 

view of healthy growth. 
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V.  Conclusions and Recommendations 

Conclusions 

The main effort during the course of this research was the development and 

proofing of the micro-etched cover slip platform.  The ultimate goal of developing a 

platform that would limit the spore distribution to one per hole was never reached. At the 

final state of development a decision between using the 3x3 micron sized mask and the 

larger 4x4 micron mask.  The trade off of this decision affected the type of data that could 

be gathered.  The larger 4x4 micron holes were a magnitude more successful in capturing 

and holding spores.  However, the amount of spores in the holes was consistently greater 

than one. This fact hindered statistical efforts to draw conclusions.  The 3x3 micron holes 

held less spores in each hole, but, over all was much less successful in holding any spores 

at all.  This made statistical analysis of probability of kill unreliable. 

The use of the platforms to separate the spore growth and allow an un-obscured 

view of each vegetative cell was fundamental in paving the way to get reliable data on 

growth rate.  The space provided for the cells to germinate supported their natural 

tendency to grow in straight lines.  Without the over lap and bunching, counting of 

generations proved much easier than experience with the traditional diluted spread plate 

method.  To this end, the etched platforms were successful. 

The other goal of this research was to validate the accepted surrogate relationship 

among Bacillus spores. The data supports the substitution of B.t. for B.a. in these type of 
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heating experiment, provided the two species of Bacillus are prepared in exactly the same 

manner.   

Recommendations for Future Work   

  Ideally, additional experimentation would discovery an optimal hole dimension 

and removal technique that would assure a one hole - one spore ratio.  Once this criterion 

is met the potential for statistical analysis dramatically increases.  Future work could then 

determine the probability of kill, injury, and spore recovery. 

More research is also needed to explore the effect of spore preparation factors 

such as water content.  Moisture content has long been proven to be a factor in mortality 

to all organisms.  Additional research could focus on comparison of moisture content to 

temperature response at multiple time intervals.   

Finally, the area of research concerning thermal inactivation of Bacillus anthracis 

that is most deficient in information is the spore’s response to high temperatures at time 

intervals under a second.  The difficulty in these short time interval experiments seemed 

to lie with an inability to find a heat source that would reliably generate almost 

instantaneous heat.  Great inroad in solving this issue was made by K. Goetz in her work 

to develop a laser  heating method that meets this short time heating problem (Goetz; 

2005).  A combination of this laser heating technique and this micro-etched platform 

would be ideal for gathering data in this untapped region of heat inactivation. 

63 



  

Appendix: Tested Methods 
 

The intent of this appendix was record methods that were tested during the course 

of this experiment, but ultimately failed to meet designated criteria.  This information is 

included as valuable mistakes that can be avoided during future work involving B.a. and 

B.t. spores on glass cover slips.  The methods discussed includes spore preparation, spore 

application, and spore removal.  

 
Preparation and Application of Spores to the Cover Slips 
 
 

The goal of the project was to get B. a. spores into the manufactured holes.  

Finding the best method to accomplish this took several attempts.  The final application 

technique had to address both the problem of putting spores down on the cover slip and 

getting a spore into a hole as well, as the second problem of removing the remaining 

spores that were not in the holes, off of the surface. 

The first attempt explored the traditional method of spreading a mixture of diluted 

spores and sterilized water.   Sterile water was pipetted onto the culture plate covering the 

plate surface.  Next, the spores were mixed with the water using a glass spread rod until a 

thick film was visible above the agar base.  This film was then pipetted into a plastic 

centrifuge tube and the more sterile water was added to bring the volume to 1/3 full.  The 

tube was vortexed to completely mix the spores before spinning for 10 minutes at 

10,000g.  After this step, the excess supernatant that rose to the top of the tube was 

poured off.  More sterile water was added to again bring the volume to 1/3 full.  These 
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last three steps were repeated two more times to essentially wash the spores ensuring that 

any extracellular debris was removed. 

This spore solution was then pipetted onto a cover slip. After careful observation 

of this traditional method a glaring problem was obvious.  This technique would not 

accomplish the first goal of putting spores in holes.  The problem was simply a ratio 

issue.  The amount of area on the cover slip that was a hole compared to the amount of 

surface area that was flat is less than 5%.  Since the amount of spores in the solution were 

deliberately reduced through dilution, the probability of a spore finding a hole on the 

surface was plainly improbable.   

In order to increase the odds created by the surface ratio, more spores needed to 

be present on the surface.  To this end, the second method explored eliminated the 

calculated dilution steps.  Spores were lifted from the agar growth plate using a sterile 

wire loop and placed directly on cover slip.  Next, 0.5 to 1 milliliter of sterile water was 

dropped on the cover slip over the spores.  The spores and water were mixed directly on 

the cover slip surface to form a liquid paste consistence.  This spore paste was spread 

over the holes using a sterile wood tooth pick.   The water on the spore laden cover slips 

was then allowed to evaporate.  Since B.a. spores are not motile on their own, the 

evaporation of the water forced the spores to settle directly on the cover slip surface. This 

also eliminated the possibility of the surface tension of the water molecules potentially 

capping the holes thereby preventing spores from reaching the holes.  Figure 32 below, 

shows this step.  Next in Figures 32 and 33 are pictures that show that the spore paste 

employed by this method was thick enough to indeed cover the surface. 
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Figure 32. Slide Surface After Rinsing with Water.  This is a picture taken at 200x 
magnification of the spore laden slide after a water rinse.  Excess spores clearly 
remain on the surface.  

 
Figure 33.  Wet Spore Paste above Hole.  This picture taken at 200x magnification 
shows the suspended spores moving over the holed surface.  Since spores are not 
motile, their movement depended of the Brownian motion of the water as it 
evaporated. 
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Figure 34. Evaporated Spore Smear.  This picture taken at 1000x magnification 
shows the large concentration of spores on the surface.  This also demonstrates the 
relative size ratio of a spore to the hole.  

 
This method of direct application of the spores without washing manifested itself 

as a problem after the SEM verification.  The first set of SEM pictures clearly showed a 

large amount of cellular debris that accompanied the spores on to the cover slips, see 

Figure 35, below.  This debris posed several problems.  First, large debris filled the holes 

preventing spores from getting inside.  Second, the debris prevented accurate counts of 

numbers of spores in holes by obscuring the view of spores and allowing a place for the 

spores to hide.  Finally, the excess debris provided additional surface areas for the spores 

to attached and be removed. The removal of the debris, while maintaining a high 

concentration of spores, resulted in the spore slurry preparation discussed in the main 

document.  
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Figure 35. SEM Picture of Cellular Debris.  The SEM picture reveals that presence 
of excess cellular debris.  This debris clogged the holes, hid spores, and interfered 
with accurate counting of spores in holes. 
 
 
Removal of Spores from the Cover Slips 

Cleaning all of the extra spores from the surface was the next step in sample 

preparation.  The trick to this process was to remove the surface spores while avoiding 

disturbing those spores already in the holes. This also took several attempts to solve. 

  The initial idea was to remove these spores by essentially mechanically scraping 

the surface clean.  A sterile razor edge was used to applied to the surface with even 

pressure was swept across the spore film covered area of the cover slip.  Although this 

method did remove most of the surface spores, it created a subsequent problem.   

Complete spore removal took several razor runs over the surface.  Even though a new 

sterile razor edge was used for each run, any imperfections or unevenness of the surface 

released shards of glass when the razor edge passed.  These shards provided additional 

cutting edges, which when picked up with the excess spore on successive razor runs, 
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scratched and marred the surface.  Because the B.a. spores are only about a micron in 

diameter, the grooves made by these glass shards served as additional trenches where 

extra spores would get lodged, thereby making the surface harder to clean.  Figure 36, 

below, shows the result of this scaring. 

 

 
Figure 36.  Razor Damage to Surface.  The damage to the surface caused by glass 
debris caught under the razor edge is clearly visible. 
 
 

A gentle approach worked much better.  Instead of scraping the spores off the 

surface with a hard edge, the spores were rinsed off with sterile water.  The cover slips 

were rinsed with the water until the spore paste film was no longer visible.  The spores 

that remained on the surface after the rinsing were then wiped away with clean laboratory 

chem-wipes.  Since the surface was moist, the spores were lifted by the wipes without 

damaging the surface like the razor did.  Figure 37 shows a cover slip prepared with this 

rinse and wipe technique.  After numerous spore germination trials this method was 
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chosen as the final technique for applying spores to the cover slips.  It was actually easier 

to perform and yielded consistent results in both numbers of occupied holes and surface 

cleanliness. 

 
Figure 37. Rinsed and Wiped Surface.  The surface was rinsed with sterile water 
until there was no visible film on the surface.  Then successive surface wiping with 
Chem.-Wipes® was repeated until the surface was clear of spores.  The mottled, 
dark areas of the holes suggest the presence of spores. 
 

 
Figure 38. Verified Surface Success.  Each successive technique was tested by 
germinating the spores to see if the technique achieved the criteria of spores in holes 
while surface is clear.  This is a successful demonstration of the discussed rinse and 
wipe technique. 
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This removal technique worked with the direct spore application method, but once 

the spores were cleaned, this method failed.  The application of the spores directly from 

the agar plate also applied some agar and the aforementioned cellular debris.  Once this 

extra material was removed, the spores were more predispositioned to be rinsed off the 

surface and absorbed by the Chem.-Wipe®.  This meant that the removal method for the 

washed spore slurry had to be dry.  The combination of needing a flat edged that would 

not scratch like the razor, was strong enough to ply the spores off the surface, but would 

also not absorb water led to the used of the plastic weigh boat.   
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